Supramolecular chemistry of anion-binding receptors based on concave macrocycles
Publiceringsår
2019
Upphovspersoner
Kiesilä, Anniina
Abstrakt
This thesis describes the supramolecular chemistry of different anion-binding host molecules with a special focus on pyridine[4]arenes. The first part of the thesis gives a brief introduction to supramolecular chemistry and its special features, host-guest chemistry and self-assembly. Later on, a short review of different hosts is presented, especially focusing on those utilized in the experimental part of the thesis. In the second part of the thesis an introduction is presented to the structural analyzation techniques utilized in the experimental part. A special focus is set on ion mobility mass spectrometry, a relatively new technique for structural characterization of supramolecular complexes. The third part presents the summary of experimental work. The binding properties of pyridinearene turned out to completely differ from previous reports in the literature. New binding features of pyridinearene were discovered, such as simultaneous endo- and exo-complex formation with neutral and anionic guests. The formation of the hexameric assembly of pyridinearene was also observed for the first time in gas phase and in solid state. In solution, the thermodynamic balance in self-assembly was revealed. Different analyzation techniques have been utilized in the structural characterisation of pyridinearenes. Ion mobility mass spectrometry proved to be spectacular for structural characterization of the gas phase assemblies. As a new technique, its utilization for structural chemistry is demonstrated in the experimental part with several examples. In this thesis, also the binding properties of cyclohexylhemicucurbit[8]uril and crown ether urea receptors were revealed and thoroughly studied in gas phase, solution and in solid state.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Separat verk
Målgrupp
Vetenskaplig
UKM:s publikationstyp
G5 Artikelavhandling
Publikationskanalens uppgifter
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Kemi
Nyckelord
[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Finland
Förlagets internationalitet
Inhemsk
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja