An Automatic Sleep Scoring Toolbox : Multi-modality of Polysomnography Signals’ Processing
Publiceringsår
2019
Upphovspersoner
Yan, Rui; Li, Fan; Wang, Xiaoyu; Ristaniemi, Tapani; Cong, Fengyu
Abstrakt
Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. To speed up the process of sleep scoring without compromising accuracy, this paper develops an automatic sleep scoring toolbox with the capability of multi-signal processing. It allows the user to choose signal types and the number of target classes. Then, an automatic process containing signal pre-processing, feature extraction, classifier training (or prediction) and result correction will be performed. Finally, the application interface displays predicted sleep structure, related sleep parameters and the sleep quality index for reference. To improve the identification accuracy of minority stages, a layer-wise classification strategy is proposed according to the signal characteristics of sleep stages. The context of the current stage is taken into consideration in the correction phase by employing a Hidden Markov Model to study the transition rules of sleep stages in the training dataset. These transition rules will be used for logic classification results. The performance of proposed toolbox has been tested on 100 subjects with an average accuracy of 85.76%. The proposed automatic scoring toolbox would alleviate the burden of the physicians, speed up sleep scoring, and expedite sleep research.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Moderpublikationens namn
Sidor
301-309
ISBN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Neurovetenskaper
Nyckelord
[object Object],[object Object],[object Object]
Publiceringsland
Portugal
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.5220/0007925503010309
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja