undefined

A Multiple Surrogate Assisted Decomposition Based Evolutionary Algorithm for Expensive Multi/Many-Objective Optimization

Publiceringsår

2019

Upphovspersoner

Habib, Ahsanul; Singh, Hemant Kumar; Chugh, Tinkle; Ray, Tapabrata; Miettinen, Kaisa

Abstrakt

Many-objective optimization problems (MaOPs) contain four or more conflicting objectives to be optimized. A number of efficient decomposition-based evolutionary algorithms have been developed in the recent years to solve them. However, computationally expensive MaOPs have been scarcely investigated. Typically, surrogate-assisted methods have been used in the literature to tackle computationally expensive problems, but such studies have largely focused on problems with 1–3 objectives. In this paper, we present an approach called hybrid surrogate-assisted many-objective evolutionary algorithm to solve computationally expensive MaOPs. The key features of the approach include: 1) the use of multiple surrogates to effectively approximate a wide range of objective functions; 2) use of two sets of reference vectors for improved performance on irregular Pareto fronts (PFs); 3) effective use of archive solutions during offspring generation; and 4) a local improvement scheme for generating high quality infill solutions. Furthermore, the approach includes constraint handling which is often overlooked in contemporary algorithms. The performance of the approach is benchmarked extensively on a set of unconstrained and constrained problems with regular and irregular PFs. A statistical comparison with the existing techniques highlights the efficacy and potential of the approach.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Miettinen Kaisa Orcid -palvelun logo

Chugh Tinkle Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

23

Nummer

6

Sidor

1000-1014

Publikationsforum

57542

Publikationsforumsnivå

3

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Matematik; Data- och informationsvetenskap

Nyckelord

[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/TEVC.2019.2899030

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja