undefined

Deducing self-interaction in eye movement data using sequential spatial point processes

Publiceringsår

2016

Upphovspersoner

Penttinen, Antti; Ylitalo, Anna-Kaisa

Abstrakt

Eye movement data are outputs of an analyser tracking the gaze when a person is inspecting a scene. These kind of data are of increasing importance in scientific research as well as in applications, e.g. in marketing and human-computer interface design. Thus the new areas of application call for advanced analysis tools. Our research objective is to suggest statistical modelling of eye movement sequences using sequential spatial point processes, which decomposes the variation in data into structural components having interpretation. We consider three elements of an eye movement sequence: heterogeneity of the target space, contextuality between subsequent movements, and time-dependent behaviour describing self-interaction. We propose two model constructions. One is based on the history-dependent rejection of transitions in a random walk and the other makes use of a history-adapted kernel function penalized by user-defined geometric model characteristics. Both models are inhomogeneous self-interacting random walks. Statistical inference based on the likelihood is suggested, some experiments are carried out, and the models are used for determining the uncertainty of important data summaries for eye movement data.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Ylitalo Anna-Kaisa Orcid -palvelun logo

Penttinen Antti Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Elsevier BV

Volym

17

Sidor

1-21

Publikationsforum

81713

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Statistik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Nederländerna

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1016/j.spasta.2016.03.005

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja