undefined

Allocating distributed AI/ML applications to cloud-edge continuum based on privacy, regulatory, and ethical constraints

Publiceringsår

2025

Upphovspersoner

Kotilainen, Pyry; Mäkitalo, Niko; Systä, Kari; Mehraj, Ali; Waseem, Muhammad; Mikkonen, Tommi; Murillo, Juan Manuel;

Abstrakt

There is an increasing need for practitioners to address legislative and ethical issues in both the development and deployment of data-driven applications with AI/ML due to growing concerns and regulations, such as GDPR and the EU AI Act. Thus, the field needs a systematic framework for assessing risks and helping to stay compliant with regulations in designing and deploying software systems. Clear and concise descriptions of risks associated with each model and data source are needed to guide the design without acquiring deep knowledge of the regulations. In this paper, we propose a reference architecture for an ethical orchestration system that manages distributed AI/ML applications on the cloud–edge continuum and present a proof-of-concept implementation of the main ideas of the architecture. Our starting point is the methods already in use in the industry, such as model cards, and we extend the idea of model cards to data source cards and software component cards, which provide practitioners and the automated system with relevant information in actionable form. With the metadata card based orchestration system and information about the risk levels of the target infrastructure, the users can create deployments of distributed AI/ML systems that fulfill the regulatory and other requirements.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Waseem Muhammad Orcid -palvelun logo

Mäkitalo Niko Orcid -palvelun logo

Kotilainen Pyry Orcid -palvelun logo

Mikkonen Tommi Orcid -palvelun logo

Tammerfors universitet

Mehraj Ali Orcid -palvelun logo

Systä Kari Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Elsevier

Volym

222

Artikelnummer

112333

Publikationsforum

61771

Publikationsforumsnivå

3

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.jss.2025.112333

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja