Machine Learning Algorithms for Acid Mine Drainage Mapping Using Sentinel-2 and Worldview-3
Publiceringsår
2024
Upphovspersoner
Farahnakian, Fahimeh; Luodes, Nike; Karlsson, Teemu
Abstrakt
Acid Mine Drainage (AMD) presents significant environmental challenges, particularly in regions with extensive mining activities. Effective monitoring and mapping of AMD are crucial for mitigating its detrimental impacts on ecosystems and water quality. This study investigates the application of Machine Learning (ML) algorithms to map AMD by fusing multispectral imagery from Sentinel-2 with high-resolution imagery from WorldView-3. We applied three widely used ML models—Random Forest (RF), K-Nearest Neighbor (KNN), and Multilayer Perceptron (MLP)—to address both classification and regression tasks. The classification models aimed to distinguish between AMD and non-AMD samples, while the regression models provided quantitative pH mapping. Our experiments were conducted on three lakes in the Outokumpu mining area in Finland, which are affected by mine waste and acidic drainage. Our results indicate that combining Sentinel-2 and WorldView-3 data significantly enhances the accuracy of AMD detection. This combined approach leverages the strengths of both datasets, providing a more robust and precise assessment of AMD impacts.
Visa merOrganisationer och upphovspersoner
Åbo universitet
Farahnakian Fahimeh
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Förläggare
Volym
16
Nummer
24
Artikelnummer
4680
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Miljöteknik; Geovetenskaper
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Schweiz
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.3390/rs16244680
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja