undefined

Tensorization of quasi-Hilbertian Sobolev spaces

Publiceringsår

2024

Upphovspersoner

Eriksson-Bique, Sylvester; Rajala, Tapio; Soultanis, Elefterios

Abstrakt

The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space X Y can be determined from its factors. We show that two natural descriptions of the Sobolev space from the literature coincide, W 1;2.X Y / D J 1;2.X; Y /, thus settling the tensorization problem for Sobolev spaces in the case p D 2, when X and Y are infinitesimally quasi-Hilbertian, i.e., the Sobolev space W 1;2 admits an equivalent renorming by a Dirichlet form. This class includes in particular metric measure spaces X; Y of finite Hausdorff dimension as well as infinitesimally Hilbertian spaces. More generally, for p 2 .1;1/ we obtain the norm-one inclusion kf kJ1;p.X;Y / kf kW 1;p.XY / and show that the norms agree on the algebraic tensor product W 1;p.X / ˝ W 1;p.Y / W 1;p.X Y /: When p D 2 and X and Y are infinitesimally quasi-Hilbertian, standard Dirichlet forms theory yields the density of W 1;2.X / ˝ W 1;2.Y / in J 1;2.X; Y /, thus implying the equality of the spaces. Our approach raises the question of the density of W 1;p.X / ˝ W 1;p.Y / in J 1;p.X; Y / in the general case.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Eriksson-Bique Sylvester Orcid -palvelun logo

Rajala Tapio Orcid -palvelun logo

Uleåborgs universitet

Eriksson-Bique Sylvester Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

EMS Press

Volym

40

Nummer

2

Sidor

565-580

Publikationsforum

66402

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Matematik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Tyskland

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.4171/rmi/1433

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja