undefined

Early Results of an AI Multiagent System for Requirements Elicitation and Analysis

Publiceringsår

2025

Upphovspersoner

Sami, Malik Abdul; Waseem, Muhammad; Zhang, Zheying; Rasheed, Zeeshan; Systä, Kari; Abrahamsson, Pekka;

Abstrakt

In agile software development, user stories capture requirements from the user’s perspective, emphasizing their needs and each feature’s value. Writing concise and quality user stories is necessary for guiding software development. Alongside user story generation, prioritizing these requirements ensures that the most important features are developed first, maximizing project value. This study explores the use of Large Language Models (LLMs) to automate the process of user story generation, quality assessment, and prioritization. We implemented a multi-agent system using Generative Pre-trained Transformers (GPT), specifically GPT-3.5 and GPT-4o, to generate and prioritize user stories from the initial project description. Our experiments on a real-world project demonstrate that GPT-3.5 handled user story generation well, achieving a higher semantic similarity score comnpared to the GPT-4o. Both models showed consistent performance in prioritizing requirements, effectively identifying the core features of the application. These early results indicate that LLMs have significant potential for automating requirements analysis, particularly generating and prioritizing user stories.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Waseem Muhammad Orcid -palvelun logo

Tammerfors universitet

Systä Kari Orcid -palvelun logo

Sami Malik Abdul Orcid -palvelun logo

Abrahamsson Pekka Orcid -palvelun logo

Rasheed Zeeshan

Zhang Zheying Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Schweiz

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1007/978-3-031-78386-9_20

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja