Early Results of an AI Multiagent System for Requirements Elicitation and Analysis
Publiceringsår
2025
Upphovspersoner
Sami, Malik Abdul; Waseem, Muhammad; Zhang, Zheying; Rasheed, Zeeshan; Systä, Kari; Abrahamsson, Pekka;
Abstrakt
In agile software development, user stories capture requirements from the user’s perspective, emphasizing their needs and each feature’s value. Writing concise and quality user stories is necessary for guiding software development. Alongside user story generation, prioritizing these requirements ensures that the most important features are developed first, maximizing project value. This study explores the use of Large Language Models (LLMs) to automate the process of user story generation, quality assessment, and prioritization. We implemented a multi-agent system using Generative Pre-trained Transformers (GPT), specifically GPT-3.5 and GPT-4o, to generate and prioritize user stories from the initial project description. Our experiments on a real-world project demonstrate that GPT-3.5 handled user story generation well, achieving a higher semantic similarity score comnpared to the GPT-4o. Both models showed consistent performance in prioritizing requirements, effectively identifying the core features of the application. These early results indicate that LLMs have significant potential for automating requirements analysis, particularly generating and prioritizing user stories.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Journal/Serie
Moderpublikationens namn
Förläggare
Sidor
307-316
ISSN
ISBN
Publikationsforum
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Nyckelord
[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Schweiz
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1007/978-3-031-78386-9_20
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja