Blowups and blowdowns of geodesics in Carnot groups
Publiceringsår
2023
Upphovspersoner
Hakavuori, Eero; Le Donne, Enrico
Abstrakt
This paper provides some partial regularity results for geodesics (i.e., isometric images of intervals) in arbitrary sub-Riemannian and sub-Finsler manifolds. Our strategy is to study infinitesimal and asymptotic properties of geodesics in Carnot groups equipped with arbitrary sub-Finsler metrics. We show that tangents of Carnot geodesics are geodesics in some groups of lower nilpotency step. Namely, every blowup curve of every geodesic in every Carnot group is still a geodesic in the group modulo its last layer. Then as a consequence we get that in every sub-Riemannian manifold any s times iterated tangent of any geodesic is a line, where s is the step of the sub-Riemannian manifold in question. With a similar approach, we also show that blowdown curves of geodesics in sub-Riemannian Carnot groups are contained in subgroups of lower rank. This latter result is also extended to rough geodesics.
Visa merOrganisationer och upphovspersoner
Helsingfors universitet
Hakavuori Eero
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Moderpublikationens namn
Volym
123
Nummer
2
Sidor
267-310
ISSN
Publikationsforum
Publikationsforumsnivå
3
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Nej
Publiceringsland
Förenta staterna (USA)
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.4310/jdg/1680883578
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja