undefined

A Successful Crowdsourcing Approach for Bird Sound Classification

Publiceringsår

2023

Upphovspersoner

Lehikoinen, Petteri; Rannisto, Meeri Kanerva; Moliterno de Camargo, Ulisses; Aintila, Aki Esko Kalevi; Lauha, Patrik Mikael; Piirainen, Esko; Somervuo, Panu Juhani; Ovaskainen, Otso

Abstrakt

Automated recorders are increasingly used in remote sensing of wildlife, yet automated methods of processing the audio remains challenging. Identifying animal sounds with machine learning provides a solution, but optimizing the models requires annotated training data. Producing such data can require much manual effort, which could be alleviated by engaging masses to contribute to research and share the workload. Birdwatchers are experts on identifying bird vocalizations and form an ideal focal audience for a citizen science project aiming for the required multitudes of annotated avian audio data. For this purpose, we launched a web portal that was targeted and advertised to Finnish birdwatchers. The users were asked to complete two kinds of tasks: 1) classify if a given bird sound belonged to the focal species and 2) classify all the bird species vocalizing in 10-second audio clips. In less than a year, the portal achieved annotations for 244,300 bird sounds and 5,358 clips, and attracted, on average, 70 visitors on daily basis. More than 200 birdwatchers took part in the classification tasks, of which 17 and 4 most dedicated users produced over half of the sound and clip classifications, respectively. As expected of birder experts, the classifications among users were highly consistent (mean agreement scores between 0.85–0.95, depending on the audio type) and resulted in highquality training data for parameterizing machine learning models. Feedback about the web portal suggested that additional functionality such as increased freedom of choice would increase user motivation and dedication.
Visa mer

Organisationer och upphovspersoner

Helsingfors universitet

Aintila Aki Esko Kalevi

Piirainen Esko

Rannisto Meeri Kanerva

Ovaskainen Otso

Somervuo Panu Juhani

Lauha Patrik Mikael

Lehikoinen Petteri

Moliterno de Camargo Ulisses

Jyväskylä universitet

Ovaskainen Otso Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

8

Nummer

1

Artikelnummer

16

Sidor

1-14

Publikationsforum

87114

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Publiceringsavgift för öppen tillgång €

912

Betalningsår för den öppen tillgång publiceringsavgiften

2023

Övriga uppgifter

Vetenskapsområden

Ekologi, evolutionsbiologi

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Förenade kungariket

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.5334/cstp.556

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja