undefined

Conformal harmonic coordinates

Publiceringsår

2023

Upphovspersoner

Lassas, Matti; Liimatainen, Tony

Abstrakt

We study conformal harmonic coordinates on Riemannian and Lorentzian manifolds, which are coordinates constructed as quotients of solutions to the conformal Laplace equation. We show existence of conformal harmonic coordinates under general conditions and find that the coordinates are a conformal analogue of harmonic coordinates. We prove up to boundary regularity results for conformal mappings. We show that Weyl, Cotton, Bach, and Fefferman-Graham obstruction tensors are elliptic operators in conformal harmonic coordinates if one also normalizes the determinant of the metric. We give a corresponding elliptic regularity results, including the analytic case. We prove a unique continuation result for Bach and obstruction flat manifolds, which are conformally flat near a point. We prove unique continuation results for conformal mappings both on Riemannian and Lorentzian manifolds.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Liimatainen Tony

Helsingfors universitet

Lassas Matti

Liimatainen Tony

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

31

Nummer

8

Sidor

2101-2155

Publikationsforum

53795

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Matematik

Nyckelord

[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.4310/CAG.2023.v31.n8.a8

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja