Conformal harmonic coordinates
Publiceringsår
2023
Upphovspersoner
Lassas, Matti; Liimatainen, Tony
Abstrakt
We study conformal harmonic coordinates on Riemannian and Lorentzian manifolds, which are coordinates constructed as quotients of solutions to the conformal Laplace equation. We show existence of conformal harmonic coordinates under general conditions and find that the coordinates are a conformal analogue of harmonic coordinates. We prove up to boundary regularity results for conformal mappings. We show that Weyl, Cotton, Bach, and Fefferman-Graham obstruction tensors are elliptic operators in conformal harmonic coordinates if one also normalizes the determinant of the metric. We give a corresponding elliptic regularity results, including the analytic case. We prove a unique continuation result for Bach and obstruction flat manifolds, which are conformally flat near a point. We prove unique continuation results for conformal mappings both on Riemannian and Lorentzian manifolds.
Visa merOrganisationer och upphovspersoner
Jyväskylä universitet
Liimatainen Tony
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Moderpublikationens namn
Förläggare
Volym
31
Nummer
8
Sidor
2101-2155
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object],[object Object]
Publiceringsland
Förenta staterna (USA)
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.4310/CAG.2023.v31.n8.a8
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja