From Biased Towards Affirmative Artificial Intelligence Tools in Education
Publiceringsår
2024
Upphovspersoner
Parland, Milena; Shcherbakov, Andrey
Abstrakt
<p>Previous research has highlighted that AI tends to contribute to bias and the marginalisation of minority groups. This paper will focus on Artificial Intelligence Tools in Education (AITED) equality and equity in the context of nation-states in the European Union, with examples from Finland. To avoid reproducing discrimination in AITED is a basic aim enforced by the law both on EU level and on national levels in EU. So far, the discussion focuses mostly on how to decrease bias and discrimination in AI, but in this paper, we aim further and introducing the idea of affirmative measures actively promoting equality and equity. The research question for this paper is: What existing methods could help us to shape more equal and affirmative AITED? We find that promoting equality and equity instead of just avoiding discrimination takes us towards affirmative rights for minorities. In this paper, we find that there is a need to engage representatives for minorities and a minority/non-discrimination expert while shaping the AITED and to create an inclusive milieu for them. We discuss the urge to use a language that specifies each minority, and we look at the difference between non-discrimination and affirmative rights for minorities. Shaping more equal AITED could also be promoted by using the WILPF, Women’s International League for Peace and Freedom, tool from Political Economic Analyses and Critical Race Theory. Introducing datasheets that accompany every data set seems also beneficial for more equal AITED.</p>
Visa merOrganisationer och upphovspersoner
Åbo Akademi
Parland Milena
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Journal/Serie
Moderpublikationens namn
Volym
1028 LNNS
Sidor
352-362
ISSN
ISBN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Social- och samhällspolitik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1007/978-3-031-61905-2_34
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja