undefined

Analyzing Participants’ Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features

Publiceringsår

2024

Upphovspersoner

Vedernikov, Alexander; Sun, Zhaodong; Kykyri, Virpi-Liisa; Pohjola, Mikko; Nokia, Miriam; Li, Xiaobai

Abstrakt

Engagement measurement finds application in healthcare, education, services. The use of physiological and behavioral features is viable, but the impracticality of traditional physiological measurement arises due to the need for contact sensors. We demonstrate the feasibility of unsupervised remote photoplethysmography (rPPG) as an alternative for contact sensors in deriving heart rate variability (HRV) features, then fusing these with behavioral features to measure engagement in online group meetings. Firstly, a unique Engagement Dataset of online interactions among social workers is collected with granular engagement labels, offering insight into virtual meeting dynamics. Secondly, a pre-trained rPPG model is customized to reconstruct rPPG signals from video meetings in an unsupervised manner, enabling the calculation of HRV features. Thirdly, the feasibility of estimating engagement from HRV features using short observation windows, with a notable enhancement when using longer observation windows of two to four minutes, is demonstrated. Fourthly, the effectiveness of behavioral cues is evaluated when fused with physiological data, which further enhances engagement estimation performance. An accuracy of 94% is achieved when only HRV features are used, eliminating the need for contact sensors or ground truth signals; use of behavioral cues raises the accuracy to 96%. Facial analysis offers precise engagement measurement, beneficial for future applications.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Pohjola Mikko

Nokia Miriam Orcid -palvelun logo

Kykyri Virpi-Liisa Orcid -palvelun logo

Uleåborgs universitet

Vedernikov Aleksandr

Sun Zhaodong Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Parallellagringens licens

Muu lisenssi

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; El-, automations- och telekommunikationsteknik, elektronik; Psykologi

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/cvprw63382.2024.00044

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja