undefined

A Workflow for Building Computationally Rational Models of Human Behavior

Publiceringsår

2024

Upphovspersoner

Chandramouli, Suyog; Shi, Danqing; Putkonen, Aini; De Peuter, Sebastiaan; Zhang, Shanshan; Jokinen, Jussi P. P.; Howes, Andrew; Oulasvirta, Antti

Abstrakt

Computational rationality explains human behavior as arising due to the maximization of expected utility under the constraints imposed by the environment and limited cognitive resources. This simple assumption, when instantiated via partially observable Markov decision processes (POMDPs), gives rise to a powerful approach for modeling human adaptive behavior, within which a variety of internal models of cognition can be embedded. In particular, such an instantiation enables the use of methods from reinforcement learning (RL) to approximate the optimal policy solution to the sequential decision-making problems posed to the cognitive system in any given setting; this stands in contrast to requiring ad hoc hand-crafted rules for capturing adaptive behavior in more traditional cognitive architectures. However, despite their successes and promise for modeling human adaptive behavior across everyday tasks, computationally rational models that use RL are not easy to build. Being a hybrid of theoretical cognitive models and machine learning (ML) necessitates that model building take into account appropriate practices from both cognitive science and ML. The design of psychological assumptions and machine learning decisions concerning reward specification, policy optimization, parameter inference, and model selection are all tangled processes rife with pitfalls that can hinder the development of valid and effective models. Drawing from a decade of work on this approach, a workflow is outlined for tackling this challenge and is accompanied by a detailed discussion of the pros and cons at key decision points.
Visa mer

Organisationer och upphovspersoner

Aalto-universitetet

Putkonen Aini

Oulasvirta Antti Orcid -palvelun logo

Shi Danqing Orcid -palvelun logo

De Peuter Sebastiaan Orcid -palvelun logo

Chandramouli Suyog Orcid -palvelun logo

Helsingfors universitet

Zhang Shanshan

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Moderpublikationens namn

Computational Brain & Behavior

Förläggare

SPRINGER

Volym

7

Nummer

3

Sidor

399-419

Publikationsforum

87079

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Medicinsk teknik; Psykologi

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Schweiz

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1007/s42113-024-00208-6

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja