undefined

"Like a Nesting Doll" : Analyzing Recursion Analogies Generated by CS Students Using Large Language Models

Publiceringsår

2024

Upphovspersoner

Bernstein, Seth; Denny, Paul; Leinonen, Juho; Kan, Lauren; Hellas, Arto; Littlefield, Matt; Sarsa, Sami; Macneil, Stephen

Abstrakt

Grasping complex computing concepts often poses a challenge for students who struggle to anchor these new ideas to familiar experiences and understandings. To help with this, a good analogy can bridge the gap between unfamiliar concepts and familiar ones, providing an engaging way to aid understanding. However, creating effective educational analogies is difficult even for experienced instructors. We investigate to what extent large language models (LLMs), specifically ChatGPT, can provide access to personally relevant analogies on demand. Focusing on recursion, a challenging threshold concept, we conducted an investigation analyzing the analogies generated by more than 350 first-year computing students. They were provided with a code snippet and tasked to generate their own recursion-based analogies using ChatGPT, optionally including personally relevant topics in their prompts. We observed a great deal of diversity in the analogies produced with student-prescribed topics, in contrast to the otherwise generic analogies, highlighting the value of student creativity when working with LLMs. Not only did students enjoy the activity and report an improved understanding of recursion, but they described more easily remembering analogies that were personally and culturally relevant.
Visa mer

Organisationer och upphovspersoner

Aalto-universitetet

Hellas Arto

Leinonen Juho Orcid -palvelun logo

Sarsa Sami Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Pedagogik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1145/3649217.3653533

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja