undefined

Combining YOLO V5 and Transfer Learning for Smoke-Based Wildfire Detection in Boreal Forests

Publiceringsår

2023

Upphovspersoner

Raita-Hakola, A.-M.; Rahkonen, S.; Suomalainen, J.; Markelin, L.; Oliveira, R.; Hakala, T.; Koivumäki, N.; Honkavaara, E.; Pölönen, I.

Abstrakt

Wildfires present severe threats to various aspects of ecosystems, human settlements, and the environment. Early detection plays a critical role in minimizing the destructive consequences of wildfires. This study introduces an innovative approach for smoke-based wildfire detection in Boreal forests by combining the YOLO V5 algorithm and transfer learning. YOLO V5 is renowned for its real-time performance and accuracy in object detection. Given the scarcity of labelled smoke images specific to wildfire scenes, transfer learning techniques are employed to address this limitation. Initially, the generalisability of smoke as an object is examined by utilising wildfire data collected from diverse environments for fine-tuning and testing purposes in Boreal forest scenarios. Subsequently, Boreal forest fire data is employed for training and fine-tuning to achieve high detection accuracy and explore benchmarks for effective local training data. This approach minimises extensive manual labelling efforts while enhancing the accuracy of smoke-based wildfire detection in Boreal forest environments. Experimental results validate the efficacy of the proposed approach. The combined YOLO V5 and transfer learning framework demonstrates a high detection accuracy, making it a promising solution for automated wildfire detection systems. Implementing this methodology can potentially enhance early detection and response to wildfires in Boreal forest regions, thereby contributing to improved disaster management and mitigation
Visa mer

Organisationer och upphovspersoner

Lantmäteriverket

Honkavaara Eija

Suomalainen Juha Orcid -palvelun logo

Markelin Lauri Orcid -palvelun logo

Koivumäki Niko

Alves de Oliveira Raquel Orcid -palvelun logo

Hakala Teemu

Jyväskylä universitet

Raita-Hakola Anna-Maria Orcid -palvelun logo

Pölönen Ilkka Orcid -palvelun logo

Rahkonen Samuli Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Moderpublikationens namn

ISPRS Geospatial Week 2023

Moderpublikationens redaktörer

El-Sheimy, N.; Abdelbary, A.A; El-Bendary, N.; Mohasseb,Y

Förläggare

Copernicus GmbH

Volym

XLVIII-1/W2-2023

Sidor

1771-1778

Publikationsforum

83846

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Geovetenskaper

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.5194/isprs-archives-xlviii-1-w2-2023-1771-2023

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja