undefined

Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images †

Publiceringsår

2023

Upphovspersoner

Turkulainen, Emma; Honkavaara, Eija; Näsi, Roope; Oliveira, Raquel A.; Hakala, Teemu; Junttila, Samuli; Karila, Kirsi; Koivumäki, Niko; Pelto-Arvo, Mikko; Tuviala, Johanna; Östersund, Madeleine; Pölönen, Ilkka; Lyytikäinen-Saarenmaa, Päivi

Abstrakt

The widespread tree mortality caused by the European spruce bark beetle (Ips typographus L.) is a significant concern for Norway spruce-dominated (Picea abies H. Karst) forests in Europe and there is evidence of increases in the affected areas due to climate warming. Effective forest monitoring methods are urgently needed for providing timely data on tree health status for conducting forest management operations that aim to prepare and mitigate the damage caused by the beetle. Unoccupied aircraft systems (UASs) in combination with machine learning image analysis have emerged as a powerful tool for the fast-response monitoring of forest health. This research aims to assess the effectiveness of deep neural networks (DNNs) in identifying bark beetle infestations at the individual tree level from UAS images. The study compares the efficacy of RGB, multispectral (MS), and hyperspectral (HS) imaging, and evaluates various neural network structures for each image type. The findings reveal that MS and HS images perform better than RGB images. A 2D-3D-CNN model trained on HS images proves to be the best for detecting infested trees, with an F1-score of 0.759, while for dead and healthy trees, the F1-scores are 0.880 and 0.928, respectively. The study also demonstrates that the tested classifier networks outperform the state-of-the-art You Only Look Once (YOLO) classifier module, and that an effective analyzer can be implemented by integrating YOLO and the DNN classifier model. The current research provides a foundation for the further exploration of MS and HS imaging in detecting bark beetle disturbances in time, which can play a crucial role in forest management efforts to combat large-scale outbreaks. The study highlights the potential of remote sensing and machine learning in monitoring forest health and mitigating the impacts of biotic stresses. It also offers valuable insights into the effectiveness of DNNs in detecting bark beetle infestations using UAS-based remote sensing technology.
Visa mer

Organisationer och upphovspersoner

Helsingfors universitet

Pölönen Ilkka

Tuviala Johanna

Pelto-Arvo Mikko

Lyytikäinen-Saarenmaa Päivi

Junttila Samuli

Östra Finlands universitet

Tuviala Johanna Säde Orcid -palvelun logo

Pelto-Arvo Mikko Perttuli Orcid -palvelun logo

Junttila Oula Samuli Orcid -palvelun logo

Lyytikäinen-Saarenmaa Päivi Marja Emilia Orcid -palvelun logo

Jyväskylä universitet

Pölönen Ilkka Orcid -palvelun logo

Lantmäteriverket

Honkavaara Eija

Turkulainen Emma

Karila Kirsi

Östersund Madeleine

Koivumäki Niko

Oliveira Raquel A.

Näsi Roope

Hakala Teemu

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Moderpublikationens namn

Remote Sensing

Förläggare

MDPI AG

Volym

15

Nummer

20

Artikelnummer

4928

Publikationsforum

71359

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Geovetenskaper; Skogsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Schweiz

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.3390/rs15204928

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja