On limits at infinity of weighted Sobolev functions
Publiceringsår
2022
Upphovspersoner
Eriksson-Bique, Sylvester; Koskela, Pekka; Nguyen, Khanh
Abstrakt
We study necessary and sufficient conditions for a Muckenhoupt weight w∈Lloc1(Rd) that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions u∈Wloc1,p(Rd,w) with a p-integrable gradient |∇u|∈Lp(Rd,w) where 1≤p<∞ and 2≤d<∞. The question is shown to subtly depend on the sense in which the limit is taken. First, we fully characterize the existence of radial limits. Second, we give essentially sharp sufficient conditions for the existence of vertical limits. In the specific setting of product and radial weights, we give if and only if statements. These generalize and give new proofs for results of Fefferman and Uspenskiĭ. As applications to partial differential equations, we give results on the limiting behavior of weighted q-Harmonic functions at infinity (1<q><∞), which depend on the integrability degree of its gradient. </q>
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal/Serie
Förläggare
Volym
283
Nummer
10
Artikelnummer
109672
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Belgien
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1016/j.jfa.2022.109672
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja