Analysis of Spatial Point Patterns with Anomalies, Covariates and Intractable Likelihoods
Publiceringsår
2022
Upphovspersoner
Kuronen, Mikko
Abstrakt
Spatial point patterns arise in a number of applications from different disciplines. They represent locations of objects or events of interest. Such data is analysed and modelled using point process statistics. This work develops new statistical models and methods for challenges encountered in a few specific applications in forestry and medicine. We consider methods for the analysis of datasets that include artefacts or missing data, introduce new point process models, and suggest tests having graphical interpretation. In one of the applications, we develop models for sweat gland activation data, which is important in early screening of diabetes. To this end, we suggest methods to handle erroneously detected points in the data produced by image analysis. We also consider modelling how the locations of tree seedlings are affected by large trees. Here we propose a Bayesian inference method for handling nonlinear covariates in a log Gaussian Cox process. Furthermore, we present an estimator for forest characteristics in data obtained by terrestrial laser scanning. The new estimator accounts for unobserved trees behind other trees. Finally, we suggest a test with a graphical interpretation for including particular covariates in a point process model.
Visa merOrganisationer och upphovspersoner
Jyväskylä universitet
Kuronen Mikko
Publikationstyp
Publikationsform
Separat verk
Målgrupp
Vetenskaplig
UKM:s publikationstyp
G5 Artikelavhandling
Publikationskanalens uppgifter
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Statistik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Finland
Förlagets internationalitet
Inhemsk
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja