Recent advances in machine learning for maximal oxygen uptake (VO<sub>2</sub> max) prediction: A review
Publiceringsår
2022
Upphovspersoner
Ashfaq, Atiqa; Cronin, Neil; Müller, Philipp
Abstrakt
Maximal oxygen uptake ( max) is the maximum amount of oxygen attainable by a person during exercise. max is used in different domains including sports and medical sciences and is usually measured during an incremental treadmill or cycle ergometer test. The drawback of directly measuring max using the maximal test is that it is expensive and requires a fixed and controlled protocol. During the last decade, various machine learning models have been developed for max prediction and numerous studies have attempted to predict max using data from submaximal and non-exercise tests. This article gives an overview of the machine learning models developed over the past five years (2016–2021) for the prediction of max. Multiple linear regression, support vector machine, artificial neural network and multilayer perceptron are some of the techniques that have been used to build predictive models using different combinations of predictor variables. Model performance is generally assessed using correlation coefficient (R-value), standard error of estimate (SEE) and root mean squared error (RMSE), computed between ground truth and predicted values. The findings of this review indicate that models using ANN typically outperform other machine learning techniques. Moreover, the predictor variables used to build the model have a large influence on the model's predictive performance.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En översiktsartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A2 Översiktsartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Volym
28
Artikelnummer
100863
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Medicinsk teknik; Gymnastik- och idrottsvetenskap
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1016/j.imu.2022.100863
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja