undefined

Recent advances in machine learning for maximal oxygen uptake (VO<sub>2</sub> max) prediction: A review

Publiceringsår

2022

Upphovspersoner

Ashfaq, Atiqa; Cronin, Neil; Müller, Philipp

Abstrakt

Maximal oxygen uptake ( max) is the maximum amount of oxygen attainable by a person during exercise. max is used in different domains including sports and medical sciences and is usually measured during an incremental treadmill or cycle ergometer test. The drawback of directly measuring max using the maximal test is that it is expensive and requires a fixed and controlled protocol. During the last decade, various machine learning models have been developed for max prediction and numerous studies have attempted to predict max using data from submaximal and non-exercise tests. This article gives an overview of the machine learning models developed over the past five years (2016–2021) for the prediction of max. Multiple linear regression, support vector machine, artificial neural network and multilayer perceptron are some of the techniques that have been used to build predictive models using different combinations of predictor variables. Model performance is generally assessed using correlation coefficient (R-value), standard error of estimate (SEE) and root mean squared error (RMSE), computed between ground truth and predicted values. The findings of this review indicate that models using ANN typically outperform other machine learning techniques. Moreover, the predictor variables used to build the model have a large influence on the model's predictive performance.
Visa mer

Organisationer och upphovspersoner

Tammerfors universitet

Müller Philipp Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En översiktsartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A2 Översiktsartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

28

Artikelnummer

100863

Publikationsforum

88019

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Medicinsk teknik; Gymnastik- och idrottsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1016/j.imu.2022.100863

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja