undefined

Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks

Publiceringsår

2020

Upphovspersoner

Hakala, Taina; Pölönen, Ilkka; Honkavaara, Eija; Näsi, Roope; Hakala, Teemu; Lindfors, Antti

Abstrakt

In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. While these planes are used for transportation they could similarly be used for remote sensing applications by adding sensors to the planes. Hyperspectral imagers are one this kind of sensor types. There is need for the efficient methods to interpret hyperspectral data to the wanted water quality parameters. In this work we survey the performance of neural networks in the prediction of water quality parameters from remotely sensed hyperspectral data in freshwater basins. The hyperspectral data consists of 36 bands in the wavelength range of 508–878 nm and the water quality parameters to be predicted are temperature, conductivity, turbidity, Secchi depth, blue-green algae, chlorophyll-a, total phosphorus, acidity and dissolved oxygen. The objective of this investigation was to study the behaviour of different types of neural networks with this kind of data. Study is a survey of the operation of neural networks on this problem, which can be used as a basis for the design of a more comprehensive study. The neural network types examined were multilayer perceptron and 1-, 2- and 3-dimensional convolutional neural networks with the effect of scaling the hyperspectral data with standard or min-max -scaler recorded. We also investigated investigated how the prediction of individual water quality parameter depends on whether the neural network model is done solely with respect to this one parameter or with several parameters predicted simultaneously with the same model. The results of the correspondence between the predicted and measured water quality parameters were presented with normalized root mean square error, Pearson correlation coefficient and coefficient of determination. The best models were obtained the 2-dimensional convolutional neural networks with standard scaling made separately for each parameter. The parameters showing good predictability were conductivity, turbidity, Secchi-depth, blue-green algae, chlorophyll-a and total phosphorus, for which the coefficient of determination was at least 0.96 (apart from Secchi-depth even 0.98).
Visa mer

Organisationer och upphovspersoner

Lantmäteriverket

Honkavaara Eija

Näsi Roope

Hakala Teemu

Jyväskylä universitet

Pölönen Ilkka Orcid -palvelun logo

Hakala Taina

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Samlingsverk

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A3 Del av bok eller annat samlingsverk

Publikationskanalens uppgifter

Moderpublikationens redaktörer

Diez, Pedro; Neittaanmäki, Pekka; Periaux, Jacques; Tuovinen, Tero; Pons-Prats, Jordi

Förläggare

Springer

Sidor

213-238

Publikationsforum

79940

Publikationsforumsnivå

0

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Miljöteknik; Geovetenskaper; Miljövetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Schweiz

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Ja

DOI

10.1007/978-3-030-37752-6_13

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja