undefined

Multitasking in Driving as Optimal Adaptation Under Uncertainty

Publiceringsår

2020

Upphovspersoner

Jokinen, Jussi P. P.; Kujala, Tuomo; Oulasvirta, Antti

Abstrakt

Objective. The objective was to better understand how people adapt multitasking behavior when circumstances in driving change and how safe versus unsafe behaviors emerge. Background. Multitasking strategies in driving adapt to changes in the task environment, but the cognitive mechanisms of this adaptation are not well known. Missing is a unifying account to explain the joint contribution of task constraints, goals, cognitive capabilities, and beliefs about the driving environment. Method. We model the driver’s decision to deploy visual attention as a stochastic sequential decision-making problem and propose hierarchical reinforcement learning as a computationally tractable solution to it. The supervisory level deploys attention based on per-task value estimates, which incorporate beliefs about risk. Model simulations are compared against human data collected in a driving simulator. Results. Human data show adaptation to the attentional demands of ongoing tasks, as measured in lane deviation and in-car gaze deployment. The predictions of our model fit the human data on these metrics. Conclusion. Multitasking strategies can be understood as optimal adaptation under uncertainty, wherein the driver adapts to cognitive constraints and the task environment’s uncertainties, aiming to maximize the expected long-term utility. Safe and unsafe behaviors emerge as the driver has to arbitrate between conflicting goals and manage uncertainty about them. Application. Simulations can inform studies of conditions that are likely to give rise to unsafe driving behavior.
Visa mer

Organisationer och upphovspersoner

Aalto-universitetet

Oulasvirta Antti Orcid -palvelun logo

Jokinen Jussi

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Sage Publishing

Volym

63

Nummer

8

Artikelnummer

0018720820927687

Sidor

1324-1341

Publikationsforum

57245

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1177/0018720820927687

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja