Multitasking in Driving as Optimal Adaptation Under Uncertainty
Publiceringsår
2020
Upphovspersoner
Jokinen, Jussi P. P.; Kujala, Tuomo; Oulasvirta, Antti
Abstrakt
Objective. The objective was to better understand how people adapt multitasking behavior when circumstances in driving change and how safe versus unsafe behaviors emerge. Background. Multitasking strategies in driving adapt to changes in the task environment, but the cognitive mechanisms of this adaptation are not well known. Missing is a unifying account to explain the joint contribution of task constraints, goals, cognitive capabilities, and beliefs about the driving environment. Method. We model the driver’s decision to deploy visual attention as a stochastic sequential decision-making problem and propose hierarchical reinforcement learning as a computationally tractable solution to it. The supervisory level deploys attention based on per-task value estimates, which incorporate beliefs about risk. Model simulations are compared against human data collected in a driving simulator. Results. Human data show adaptation to the attentional demands of ongoing tasks, as measured in lane deviation and in-car gaze deployment. The predictions of our model fit the human data on these metrics. Conclusion. Multitasking strategies can be understood as optimal adaptation under uncertainty, wherein the driver adapts to cognitive constraints and the task environment’s uncertainties, aiming to maximize the expected long-term utility. Safe and unsafe behaviors emerge as the driver has to arbitrate between conflicting goals and manage uncertainty about them. Application. Simulations can inform studies of conditions that are likely to give rise to unsafe driving behavior.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Förläggare
Volym
63
Nummer
8
Artikelnummer
0018720820927687
Sidor
1324-1341
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1177/0018720820927687
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja