Higher rank symmetries in analytic number theory: applications to prime numbers, equidistribution, and divisor function correlations

Bidragets beskrivning

The project investigates classical open questions in number theory such as the twin prime conjecture, which states that there are infinitely many pirme numbers p such that p+2 is also a prime number. This problem has symmetries based on the matrix group GL(2) that have been exploited in previous research. The main goal is to develop a new method based on higher rank matrix groups such as GL(3) and study how these higher rank symmetries may be applied to number theoretical problems such as the equidistribution of roots of entangled quadratic congruences, correlations of the ternary divisor function, and the sixth moment of the zeta function
Visa mer

Startår

2025

Slutår

2029

Beviljade finansiering

Jori Merikoski Orcid -palvelun logo
614 303 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiforskare

Beslutfattare

Forskningsrådet för naturvetenskap och teknik
12.06.2025

Övriga uppgifter

Finansieringsbeslutets nummer

369650

Vetenskapsområden

Matematik

Forskningsområden

Puhdas matematiikka