CAUSALTIME: Bayesian causal inference for multivariate longitudinal data

Bidragets beskrivning

The CAUSALTIME project develops advanced statistical methods that allow the study of complex causal relationships between multiple time-varying phenomena in various fields of science and society at large. The project enables this by combining theoretical causal identification research, computational Bayesian inference methods, and novel visualisation techniques for the creation of freely available open-source software for efficient, interpretable, and transparent causal effect estimation, visualization, dissemination, and decision-making based on temporal data.
Visa mer

Startår

2023

Slutår

2027

Beviljade finansiering

Jouni Helske Orcid -palvelun logo
627 616 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiforskare

Övriga uppgifter

Finansieringsbeslutets nummer

355153

Vetenskapsområden

Statistik

Forskningsområden

Tilastotiede