CAUSALTIME: Bayesian causal inference for multivariate longitudinal data
Bidragets beskrivning
The CAUSALTIME project develops advanced statistical methods that allow the study of complex causal relationships between multiple time-varying phenomena in various fields of science and society at large. The project enables this by combining theoretical causal identification research, computational Bayesian inference methods, and novel visualisation techniques for the creation of freely available open-source software for efficient, interpretable, and transparent causal effect estimation, visualization, dissemination, and decision-making based on temporal data.
Visa merStartår
2023
Slutår
2027
Beviljade finansiering
Finansiär
Finlands Akademi
Typ av finansiering
Akademiforskare
Utlysning
Övriga uppgifter
Finansieringsbeslutets nummer
355153
Vetenskapsområden
Statistik
Forskningsområden
Tilastotiede