Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups
Bidragets beskrivning
This project investigates a metric space that behaves very differently from the familiar Euclidean space: in the sub-Riemannian Heisenberg group H, a line segment can have infinite length, and translations do not commute. The resulting geometry is well-suited to model constrained motion and it has intriguing connections to the theory of subelliptic partial differential equations (PDE). The objective of the project is twofold. The first part aims to promote a particular branch of mathematical analysis, namely a theory of quantitative rectifiability, in the setting of H. New tools will be developed to study the regularity of surface-like sets in H. The second goal is to apply these tools to gain information about boundaries of sets (i) on which a certain PDE can be solved with rough boundary data, or (ii) which arise as perimeter minimizers in an isoperimetric problem on H. The project involves international collaboration with researchers at the Universities of Connecticut and Padova.
Visa merStartår
2019
Slutår
2025
Beviljade finansiering
Andra beslut
352649
Akademiforskarens forskningskostnader(2022)
159 190 €
328846
Akademiforskarens forskningskostnader(2019)
209 925 €
Finansiär
Finlands Akademi
Typ av finansiering
Akademiforskare
Utlysning
Övriga uppgifter
Finansieringsbeslutets nummer
321696
Vetenskapsområden
Matematik
Forskningsområden
Puhdas matematiikka
Identifierade teman
quantum computing, quantum technology