Robust non-linear multivariate methods

Bidragets beskrivning

In this project, we will develop methods of data analysis that are simultaneously able to (i) model non-linear dependencies and (ii) tolerate large amounts of contaminated and faulty data (a property known as robustness). Both properties are highly called for in the analysis of the complex data sets encountered today. Our main focus will be on constructing estimators of location and scatter and on using them to develop robust non-linear dimension reduction. The developed methods will be evaluated both theoretically and through their capabilities in data analysis.
Visa mer

Startår

2022

Slutår

2027

Beviljade finansiering

Joni Virta Orcid -palvelun logo
447 650 €

Andra beslut

368494
Akademiforskarens forskningskostnader(2025)
138 309 €
353769
Akademiforskarens forskningskostnader(2022)
240 000 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiforskare

Övriga uppgifter

Finansieringsbeslutets nummer

347501

Vetenskapsområden

Statistik

Forskningsområden

Tilastotiede

Identifierade teman

computer science, information science, algorithms