Robust non-linear multivariate methods
Bidragets beskrivning
In this project, we will develop methods of data analysis that are simultaneously able to (i) model non-linear dependencies and (ii) tolerate large amounts of contaminated and faulty data (a property known as robustness). Both properties are highly called for in the analysis of the complex data sets encountered today. Our main focus will be on constructing estimators of location and scatter and on using them to develop robust non-linear dimension reduction. The developed methods will be evaluated both theoretically and through their capabilities in data analysis.
Visa merStartår
2022
Slutår
2027
Beviljade finansiering
Andra beslut
368494
Akademiforskarens forskningskostnader(2025)
138 309 €
353769
Akademiforskarens forskningskostnader(2022)
240 000 €
Finansiär
Finlands Akademi
Typ av finansiering
Akademiforskare
Utlysning
Övriga uppgifter
Finansieringsbeslutets nummer
347501
Vetenskapsområden
Statistik
Forskningsområden
Tilastotiede
Identifierade teman
computer science, information science, algorithms