Trafficability Prediction and Route Planning for Forest Machines

Akronym

TRAM

Bidragets beskrivning

The objective of this project is to develop novel Machine Learning (ML) methods for predicting terrain trafficability for forest machines based on model-data fusion and to develop efficient route planning approaches based on the estimated trafficability maps with uncertainties. We hypothesize that reliable terrain trafficability predictions will be achieved by combining the multi-source heterogeneous spatiotemporal environmental open big data to in-situ measurements from forest vehicle fleet and correct complexity physical terrain models via ML methods. The second main objective of the research, automated route planning, gives the basis for the actual autonomous operational ability when combined with the local sensor information providing situational awareness. Followed by route planning formulation with constraints and boundary conditions both heurestic and maximum margin planning optimization approaches are utilized.
Visa mer

Startår

2020

Slutår

2024

Beviljade finansiering

Jukka Heikkonen Orcid -palvelun logo
393 711 €


Rollen i Finlands Akademis konsortium

Övriga parter i konsortiet

Partner
Naturresursinstitutet (332172)
400 127 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiprojekt

Övriga uppgifter

Finansieringsbeslutets nummer

332171

Vetenskapsområden

Data- och informationsvetenskap

Forskningsområden

Laskennallinen data-analyysi

Identifierade teman

forest, forestry