undefined

Enhanced YOLOv8 Model for Accurate and Real-Time Remote Sensing Target Detection

Publiceringsår

2026

Upphovspersoner

Ahmad, Israr; Shang, Fengjun; Faheem, Muhammad

Abstrakt

Current remote sensing image object detection algorithms often struggle with false positives, missed targets, and suboptimal accuracy. To address these issues, we propose an improved YOLOv8 network (PIYN) solution achieved through targeted modifications to the YOLOv8 architecture. The backbone of YOLOv8 utilizes a Cross-Stage Partial (CSP) structure that includes two convolutions, called a faster C2f module. Firstly, we infuse the C2f module integrating an Efficient Multi-Scale Attention (EMA) mechanism, which enhances the module's ability to process information across various scales. Secondly, we introduce a Compact Path Aggregation Network (Compact-PAN) structure within the neck of the network, which reduces the computational complexity of the model. Finally, replacing the Complete Intersection over Union (CIoU) loss function with the Weighted Intersection over Union (WIoU) loss refines the model's detection accuracy. Additionally, we applied K-fold cross-validation on the dataset to mitigate overfitting. Experiments using the extensive Dataset for Object Detection in Aerial images (DOTA) and the Dataset for Object Recognition in Optical Remote Sensing Imagery (DIOR) reveal PIYN's effectiveness: there is a 2.43% and 2.56% increase in Mean Average Precision (mAP) over YOLOv8, respectively, alongside a 4.49% reduction in GFLOPs. These results demonstrate PIYN's capability to enhance accuracy while maintaining efficiency and solidify its progressive and practical impact, particularly for smart city applications.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

96

Artikelnummer

104093

Publikationsforum

53946

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

El-, automations- och telekommunikationsteknik, elektronik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.csi.2025.104093

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja