Enhanced YOLOv8 Model for Accurate and Real-Time Remote Sensing Target Detection
Publiceringsår
2026
Upphovspersoner
Ahmad, Israr; Shang, Fengjun; Faheem, Muhammad
Abstrakt
Current remote sensing image object detection algorithms often struggle with false positives, missed targets, and suboptimal accuracy. To address these issues, we propose an improved YOLOv8 network (PIYN) solution achieved through targeted modifications to the YOLOv8 architecture. The backbone of YOLOv8 utilizes a Cross-Stage Partial (CSP) structure that includes two convolutions, called a faster C2f module. Firstly, we infuse the C2f module integrating an Efficient Multi-Scale Attention (EMA) mechanism, which enhances the module's ability to process information across various scales. Secondly, we introduce a Compact Path Aggregation Network (Compact-PAN) structure within the neck of the network, which reduces the computational complexity of the model. Finally, replacing the Complete Intersection over Union (CIoU) loss function with the Weighted Intersection over Union (WIoU) loss refines the model's detection accuracy. Additionally, we applied K-fold cross-validation on the dataset to mitigate overfitting. Experiments using the extensive Dataset for Object Detection in Aerial images (DOTA) and the Dataset for Object Recognition in Optical Remote Sensing Imagery (DIOR) reveal PIYN's effectiveness: there is a 2.43% and 2.56% increase in Mean Average Precision (mAP) over YOLOv8, respectively, alongside a 4.49% reduction in GFLOPs. These results demonstrate PIYN's capability to enhance accuracy while maintaining efficiency and solidify its progressive and practical impact, particularly for smart city applications.
Visa merOrganisationer och upphovspersoner
Teknologiska forskningscentralen VTT Ab
Faheem Muhammad
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal/Serie
Volym
96
Artikelnummer
104093
ISSN
Publikationsforum
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
El-, automations- och telekommunikationsteknik, elektronik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1016/j.csi.2025.104093
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja