undefined

Regularization with optimal space-time priors

Publiceringsår

2025

Upphovspersoner

Bubba Tatiana A.; Heikkilä Tommi; Labate Demetrio; Ratti Luca

Abstrakt

We propose a variational regularization approach based on a multiscale representation called cylindrical shearlets aimed at dynamic imaging problems, especially dynamic tomography. The intuitive idea of our approach is to integrate a sequence of separable static problems in the mismatch term of the cost function, while the regularization term handles the nonstationary target as a spatio-temporal object. This approach is motivated by the fact that cylindrical shearlets provide (nearly) optimally sparse approximations on an idealized class of functions modeling spatio-temportal data and the numerical observation that they provide highly sparse approximations even for more general spatio-temporal image sequences found in dynamic tomography applications. To formulate our regularization model, we introduce cylindrical shearlet smoothness spaces, which are instrumental for defining suitable embeddings in functional spaces. We prove that the proposed regularization strategy is well-defined, and the minimization problem has a unique solution (for p > 1). Furthermore, we provide convergence rates (in terms of the symmetric Bregman distance) under deterministic and random noise conditions, within the context of statistical inverse learning. We numerically validate our theoretical results using both simulated and measured dynamic tomography data, showing that our approach leads to an efficient and robust reconstruction strategy.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

18

Nummer

3

Sidor

1563-1600

Publikationsforum

67081

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Matematik

Nyckelord

[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1137/24M1661923

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja