Regularization with optimal space-time priors
Publiceringsår
2025
Upphovspersoner
Bubba Tatiana A.; Heikkilä Tommi; Labate Demetrio; Ratti Luca
Abstrakt
We propose a variational regularization approach based on a multiscale representation called cylindrical shearlets aimed at dynamic imaging problems, especially dynamic tomography. The intuitive idea of our approach is to integrate a sequence of separable static problems in the mismatch term of the cost function, while the regularization term handles the nonstationary target as a spatio-temporal object. This approach is motivated by the fact that cylindrical shearlets provide (nearly) optimally sparse approximations on an idealized class of functions modeling spatio-temportal data and the numerical observation that they provide highly sparse approximations even for more general spatio-temporal image sequences found in dynamic tomography applications. To formulate our regularization model, we introduce cylindrical shearlet smoothness spaces, which are instrumental for defining suitable embeddings in functional spaces. We prove that the proposed regularization strategy is well-defined, and the minimization problem has a unique solution (for p > 1). Furthermore, we provide convergence rates (in terms of the symmetric Bregman distance) under deterministic and random noise conditions, within the context of statistical inverse learning. We numerically validate our theoretical results using both simulated and measured dynamic tomography data, showing that our approach leads to an efficient and robust reconstruction strategy.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Volym
18
Nummer
3
Sidor
1563-1600
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1137/24M1661923
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja