undefined

Deep Unsupervised Segmentation of Log Point Clouds

Publiceringsår

2025

Upphovspersoner

Zolotarev Fedor; Eerola Tuomas; Kauppi Tomi

Abstrakt

In sawmills, it is essential to accurately measure the raw material, i.e. wooden logs, to optimise the sawing process. Earlier studies have shown that accurate predictions of the inner structure of the logs can be obtained using just surface point clouds produced by a laser scanner. This provides a cost-efficient and fast alternative to the X-ray CT-based measurement devices. The essential steps in analysing log point clouds is segmentation, as it forms the basis for finding the fine surface details that provide the cues about the inner structure of the log. We propose a novel Point Transformer-based point cloud segmentation technique that learns to find the points belonging to the log surface in unsupervised manner. This is obtained using a loss function that utilises the geometrical properties of a cylinder while taking into account the shape variation common in timber logs. We demonstrate the accuracy of the method on wooden logs, but the approach could be utilised also on other cylindrical objects.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Sidor

183-196

Publikationsforum

55638

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Internationell sampublikation

Nej

Sampublikation med ett företag

Ja

DOI

10.1007/978-3-031-92805-5_12

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja