undefined

Tropical Cyclone Intensity Prediction Using Spatio-Temporal Data Fusion

Publiceringsår

2025

Upphovspersoner

Sattar, Kalim; Muhammad Saad Missen, Malik; Saher, Najia; Nawaz Bashir, Rab; Zoupash Zahra, Syeda; Faheem, Muhammad; Rehman Khan, Amjad

Abstrakt

<p>Tropical cyclone is a sea storm that causes important life and economic losses in the coastal regions in the tropical zone around the equator of the earth. Tropical cyclone intensity is an important characteristic used to estimate the strength of the tropical cyclone. This study aims to improve the tropical cyclone intensity prediction by concatenating the spatial and temporal features of tropical cyclones. The proposed methodology utilized the deep learning based approach for handling 3D and 2D features for 24h early intensity prediction. In the first phase, a dynamic grid-based approach is utilized to extract the spatial features in a ( 3 × 3 ) grid format from the eye of the TC. These spatial features are extracted for four different components (u,v,t,r) and 37 different isobaric planes. In the second step, multiple convolutional layers are used to process each spatial component separately, and a fusion method is used to combine the spatial and temporal features. The proposed method achieved state-of-the-art results by reducing the MAE up to 3.31% overall and 8.5%,14.78%, 5.67% for u,v, and (u,v) add fusion components, respectively. The proposed methodology outperformed the state-of-the-art Saf-net model by 8.5 %,14.78%,5.67% for u,v, and (u,v) add fusion, respectively. A performance comparison on four real-time tropical cyclones (Bavi 2015, AERE 2016, NANMADOL 2017, HECTOR 2018) is also performed. The proposed model achieved MAE 2.92, 2.99, 2.46, 3.95 that are 10.08%, 34.35%, 23.65%, and 3.2% lower than state-of-the-art spatio-temporal models, respectively.</p>
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

13

Sidor

70095-70104

Publikationsforum

78297

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

El-, automations- och telekommunikationsteknik, elektronik

Nyckelord

[object Object],[object Object],[object Object],[object Object]

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/ACCESS.2025.3561355

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja