Tropical Cyclone Intensity Prediction Using Spatio-Temporal Data Fusion
Publiceringsår
2025
Upphovspersoner
Sattar, Kalim; Muhammad Saad Missen, Malik; Saher, Najia; Nawaz Bashir, Rab; Zoupash Zahra, Syeda; Faheem, Muhammad; Rehman Khan, Amjad
Abstrakt
<p>Tropical cyclone is a sea storm that causes important life and economic losses in the coastal regions in the tropical zone around the equator of the earth. Tropical cyclone intensity is an important characteristic used to estimate the strength of the tropical cyclone. This study aims to improve the tropical cyclone intensity prediction by concatenating the spatial and temporal features of tropical cyclones. The proposed methodology utilized the deep learning based approach for handling 3D and 2D features for 24h early intensity prediction. In the first phase, a dynamic grid-based approach is utilized to extract the spatial features in a ( 3 × 3 ) grid format from the eye of the TC. These spatial features are extracted for four different components (u,v,t,r) and 37 different isobaric planes. In the second step, multiple convolutional layers are used to process each spatial component separately, and a fusion method is used to combine the spatial and temporal features. The proposed method achieved state-of-the-art results by reducing the MAE up to 3.31% overall and 8.5%,14.78%, 5.67% for u,v, and (u,v) add fusion components, respectively. The proposed methodology outperformed the state-of-the-art Saf-net model by 8.5 %,14.78%,5.67% for u,v, and (u,v) add fusion, respectively. A performance comparison on four real-time tropical cyclones (Bavi 2015, AERE 2016, NANMADOL 2017, HECTOR 2018) is also performed. The proposed model achieved MAE 2.92, 2.99, 2.46, 3.95 that are 10.08%, 34.35%, 23.65%, and 3.2% lower than state-of-the-art spatio-temporal models, respectively.</p>
Visa merOrganisationer och upphovspersoner
Teknologiska forskningscentralen VTT Ab
Faheem Muhammad
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Volym
13
Sidor
70095-70104
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
El-, automations- och telekommunikationsteknik, elektronik
Nyckelord
[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1109/ACCESS.2025.3561355
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja