undefined

Machine Learning Techniques for Enhanced Intrusion Detection in IoT Security

Publiceringsår

2025

Upphovspersoner

Hakami, Hanadi; Faheem, Muhammad; Bashir Ahmad, Majid

Abstrakt

<p>Network Intrusion Detection Systems (NIDSs) are fundamental to safeguarding computer networks. Intrusion detection systems must become more effective as new attacks are developed and networks grow. Anomaly-based automated detection stands out due to its superior performance among the various detection techniques. However, with the increasing complexity and frequency of cyberattacks, managing vast amounts of data remains challenging for anomaly-based NIDS. Therefore, it is necessary to find an efficient method for solving the problem by using classification with an intrusion detection system which analyzes enormous amounts of traffic data. This research introduces a new model that leverages machine learning (ML) and deep learning (DL) to enhance detection effectiveness and ensure reliability. The approach optimizes data preprocessing by integrating SMOTE for effective data balancing and Pearson's Correlation Coefficient (PCC) for feature selection. We compared several ML and DL techniques to detect and address the most efficient one for our pipeline. Compared with other approaches, LSTM and RF show superior results when tested on the WSN-DS, UNSW-NB15, and CIC-IDS 2017 datasets. Additionally, the proposed solution prevents biases from arising by addressing imbalanced datasets.</p>
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

13

Sidor

31140-31158

Publikationsforum

78297

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

El-, automations- och telekommunikationsteknik, elektronik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/ACCESS.2025.3542227

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja