A federated learning-based zero trust intrusion detection system for Internet of Things
Publiceringsår
2024
Upphovspersoner
Javeed Danish; Saeed Muhammad Shahid; Adil Muhammad; Kumar Prabhat; Jolfaei Alireza
Abstrakt
The rapid expansion of Internet of Things (IoT) devices presents unique challenges in ensuring the security and privacy of interconnected systems. As cyberattacks become more frequent, developing an effective and scalable Intrusion Detection System (IDS) based on Federated Learning (FL) for IoT becomes increasingly complex. Current methodologies struggle to balance spatial and temporal feature extraction, especially when dealing with dynamic and evolving cyber threats. The lack of diversity in datasets used for FL-based IDS evaluations further impedes progress. There is also a noticeable tradeoff between performance and scalability, particularly as the number of edge devices in communication increases. To address these challenges, this article introduces a horizontal FL model that combines Convolutional Neural Networks (CNN) and Bidirectional Long-Term Short Memory (BiLSTM) for effective intrusion detection. This hybrid approach aims to overcome the limitations of existing methods and enhance the effectiveness of intrusion detection in the context of FL for IoT. Specifically, CNN is used for spatial feature extraction, enabling the model to identify local patterns indicative of potential intrusions, while the BiLSTM component captures temporal dependencies and learns sequential patterns within the data. The proposed IDS follows a zero-trust model by keeping the data on local edge devices and sharing only the learned weights with the centralized FL server. The FL server then aggregates updates from various sources to optimize the accuracy of the global learning model. Experimental results using CICIDS2017 and Edge-IIoTset demonstrate the effectiveness of the proposed approach over centralized and federated deep learning-based IDS.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal/Serie
Förläggare
Volym
162
Artikelnummer
103540
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Förlagets internationalitet
Internationell
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1016/j.adhoc.2024.103540
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja