undefined

Hybrid regression method to predict forest variables from Earth observation data in boreal forests

Publiceringsår

2025

Upphovspersoner

Halme, Eelis; Mõttus, Matti

Abstrakt

Satellite remote sensing is essential for monitoring the boreal forest, the largest land biome on Earth. With the growing volume of Earth observation (EO) data and increasing demand for actionable information, more efficient and robust monitoring methods are needed. Machine learning-based approaches offer flexibility but rely on extensive training data, which can be generated with reflectance models. This study introduces a hybrid regression method, integrating the forest reflectance and transmittance model FRT with a random forest regressor. Using a representative dataset from Finland (24 081 plots), the method was trained to predict structural boreal forest variables: mean height, mean diameter at breast height (DBH) and basal area from EO data. The prediction performance was evaluated using three independent test areas, two from Finland and one from Sweden. In Finland, the most accurate predictions had root-mean-square errors of 3.6 m (19.1%) for height, 6.3 cm (27.3%) for DBH and 9.9 m²/ha (31.6%) for basal area. In Sweden, low R² values (< 0.1) indicated limitations in transferability. The results suggest that combining reflectance modelling with machine learning can advance environmental monitoring methodologies in the boreal forest but also demonstrate the challenges of applying these methods across different geographical regions.
Visa mer

Organisationer och upphovspersoner

Teknologiska forskningscentralen VTT Ab

Halme Eelis Orcid -palvelun logo

Mõttus Matti Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

58

Nummer

1

Artikelnummer

2462032

Publikationsforum

66614

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

El-, automations- och telekommunikationsteknik, elektronik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1080/22797254.2025.2462032

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja