Uniform Physics Informed Neural Network Framework for Microgrid and its application in voltage stability analysis
Publiceringsår
2025
Upphovspersoner
Feng, Renhai; Wajid, Khan; Faheem, Muhammad; Wang, Jiang; Subhan, Fazal E.; Bhutta, Muhammad Shoaib
Abstrakt
This paper focus on the application of Physics Informed Neural Network (PINN) for extracting parameters of photovoltaic (PV), wind, and energy storage equipment models. Accurately extracting the parameters of these models is essential for effectively controlling and optimizing the overall stability of Chongqing power system (CPS). Despite numerous algorithms proposed to tackle this issue, accurately and reliably extracting the parameters of these remains a significant challenge. This paper proposed an improved PINN, named Uniform Physics Informed Neural Network (UPINN), with Proximal Policy Optimization (PPO) based reinforcement learning, for extortion of parameters of these models. The PINN difficulty is overcome in UPINN by configuring four strategies: feedback operator, GRU gating mechanisms, transfer operator with historic population, and modification factor with PPO aided reinforcement learning. UPINN models are trained iteratively to maximize parameters and reduce RMSE. UPINN accurately extracts parameters and describes the behavior of PV, wind, and energy storage equipment models as it converges towards optimal solutions through parameter adjustments and RMSE evaluations. The UPINN was implemented for real-time voltage stability monitoring of CPS. The results show that UPINN performs better than other neural network models in respect of accuracy and stability, demonstrating the effectiveness of improved strategies. Moreover, its emphasis the importance of computed and estimated indices obtained through UPINN for predicting voltage collapse occurrences within the system.
Visa merOrganisationer och upphovspersoner
Teknologiska forskningscentralen VTT Ab
Faheem Muhammad
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Volym
13
Sidor
8110-8126
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
El-, automations- och telekommunikationsteknik, elektronik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Ja
DOI
10.1109/ACCESS.2025.3527047
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja