undefined

Biological contaminants analysis in microalgae culture by UV–vis spectroscopy and machine learning

Publiceringsår

2025

Upphovspersoner

Paiva, Eduardo Maia; Hyttinen, Eevi; Dönsberg, Timo; Barth, Dorothee

Abstrakt

<p>This study elucidates the utility and efficacy of UV–visible spectroscopy for the detection and characterization of biological contaminants within microalgae cultures, augmented by machine learning algorithms. Biological contamination, exemplified by flagellates and rotifers, poses a significant concern due to its potential to rapidly devastate entire cultures, thus jeopardizing commercial viability. Conventional analytical methods for monitoring contamination, such as microscopy and cytometry, are often labor-intensive, reliant on specialized expertise for microorganism identification, and may lack specificity in discerning the nature of contamination, impeding timely intervention. UV–visible spectroscopy offers a compelling solution by overcoming many of these challenges, affording specificity in analysis, real-time monitoring capabilities, and automation, owing to the intricate pigment chemistry inherent in the microalgae realm, which generates distinct UV–visible spectra. Through the measuring of contaminated and uncontaminated samples, coupled with machine learning analysis of their respective spectra, this study explores the underlying biochemical principles driving spectral data, thereby justifying the efficacy of the technique. The findings underscore the wealth of information encapsulated within UV–visible spectral data, which can be effectively harnessed through classification algorithms for early-stage identification of contamination in real-time applications.</p>
Visa mer

Organisationer och upphovspersoner

Teknologiska forskningscentralen VTT Ab

Barth Dorothee Orcid -palvelun logo

Paiva Eduardo Maia Orcid -palvelun logo

Hyttinen Eevi Orcid -palvelun logo

Dönsberg Timo Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

330

Artikelnummer

125690

Publikationsforum

67488

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Licens för förläggarens version

CC BY

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Kemi

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1016/j.saa.2024.125690

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja