Biological contaminants analysis in microalgae culture by UV–vis spectroscopy and machine learning
Publiceringsår
2025
Upphovspersoner
Paiva, Eduardo Maia; Hyttinen, Eevi; Dönsberg, Timo; Barth, Dorothee
Abstrakt
<p>This study elucidates the utility and efficacy of UV–visible spectroscopy for the detection and characterization of biological contaminants within microalgae cultures, augmented by machine learning algorithms. Biological contamination, exemplified by flagellates and rotifers, poses a significant concern due to its potential to rapidly devastate entire cultures, thus jeopardizing commercial viability. Conventional analytical methods for monitoring contamination, such as microscopy and cytometry, are often labor-intensive, reliant on specialized expertise for microorganism identification, and may lack specificity in discerning the nature of contamination, impeding timely intervention. UV–visible spectroscopy offers a compelling solution by overcoming many of these challenges, affording specificity in analysis, real-time monitoring capabilities, and automation, owing to the intricate pigment chemistry inherent in the microalgae realm, which generates distinct UV–visible spectra. Through the measuring of contaminated and uncontaminated samples, coupled with machine learning analysis of their respective spectra, this study explores the underlying biochemical principles driving spectral data, thereby justifying the efficacy of the technique. The findings underscore the wealth of information encapsulated within UV–visible spectral data, which can be effectively harnessed through classification algorithms for early-stage identification of contamination in real-time applications.</p>
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Volym
330
Artikelnummer
125690
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Kemi
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1016/j.saa.2024.125690
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja