undefined

Replicating Existing Axial Magnetic Bearing Controller With a Neural Network

Publiceringsår

2024

Upphovspersoner

Rehtla Marek; Abubakar Ibrahim; Putkonen Atte; Shishkov Aleksandr; Nevaranta Niko; Lindh Tuomo

Abstrakt

In various industrial applications, neural networkbased control solutions can present a viable alternative to traditional control laws. The adaptability of these solutions allows the control law to be trained through data observations by considering the tools of deep learning. One of the example fields is replacing an existing controller with a neural network with the idea that the network is trained to mimic the control law. This paper focuses on the replacement of the axial active magnetic bearing (AMB) controller with a nonlinear autoregressive with external input (NARX) neural network structure. The learning process is treated as a black box, meaning there is no prior knowledge of the controller, and it utilizes input/output data for training. A step-by-step fitting procedure is applied and the obtained neural network structures are linearized to enable frequency domain analysis of the control performance. The obtained controllers are evaluated with electrical machine with AMB suspended rotor system.
Visa mer

Organisationer och upphovspersoner

Lappeenrannan–Lahden teknillinen yliopisto LUT

Putkonen Atte

Shishkov Aleksandr

Abubakar Ibrahim

Rehtla Marek

Nevaranta Niko Orcid -palvelun logo

Lindh Tuomo Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

El-, automations- och telekommunikationsteknik, elektronik

Nyckelord

[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1109/ECCEEurope62508.2024.10751915

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja