undefined

Comparison of Meta-Heuristic Optimization Algorithms in Ship Hull Cutting Plan Generation

Publiceringsår

2024

Upphovspersoner

Keshtiarast Esfahani Mahshad; Li Ming; Handroos Heikki

Abstrakt

The optimization of ship hull dismantling is crucial for advancing the efficiency and safety of the ship recycling industry, particularly in green facilities. This paper presents a comparative study of meta-heuristic optimization algorithms-Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA)-for generating an optimized cutting plan for end-of-life (EOL) vessels. The fitness function developed aims to minimize the cutting area while imposing constraints on block mass and center of mass displacement, ensuring safe and efficient dismantling. Our study utilized CAD models and Fusion 360 API for data derivation, ensuring precise optimization inputs. Results indicate that GA and SA achieved robust performance, effectively balancing exploration and exploitation, and converging to optimal solutions with cutting areas around 9.1×106cm2 . In contrast, PSO struggled with the high-dimensional search space, failing to converge effectively. The GA demonstrated efficiency with a weighted random initialization and tournament selection, while SA benefited from a high initial temperature and an exponential cooling schedule. This study underscores the potential of meta-heuristic algorithms in enhancing the automation and safety of ship dismantling processes.
Visa mer

Organisationer och upphovspersoner

Lappeenrannan–Lahden teknillinen yliopisto LUT

Handroos Heikki Orcid -palvelun logo

Keshtiarast Esfahani Mahshad

Li Ming Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Konferens

2024 6th International Conference on Data-driven Optimization of Complex Systems

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Maskin- och produktionsteknik

Förlagets internationalitet

Internationell

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1109/DOCS63458.2024.10704462

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja