Comparison of Meta-Heuristic Optimization Algorithms in Ship Hull Cutting Plan Generation
Publiceringsår
2024
Upphovspersoner
Keshtiarast Esfahani Mahshad; Li Ming; Handroos Heikki
Abstrakt
The optimization of ship hull dismantling is crucial for advancing the efficiency and safety of the ship recycling industry, particularly in green facilities. This paper presents a comparative study of meta-heuristic optimization algorithms-Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA)-for generating an optimized cutting plan for end-of-life (EOL) vessels. The fitness function developed aims to minimize the cutting area while imposing constraints on block mass and center of mass displacement, ensuring safe and efficient dismantling. Our study utilized CAD models and Fusion 360 API for data derivation, ensuring precise optimization inputs. Results indicate that GA and SA achieved robust performance, effectively balancing exploration and exploitation, and converging to optimal solutions with cutting areas around 9.1×106cm2 . In contrast, PSO struggled with the high-dimensional search space, failing to converge effectively. The GA demonstrated efficiency with a weighted random initialization and tournament selection, while SA benefited from a high initial temperature and an exponential cooling schedule. This study underscores the potential of meta-heuristic algorithms in enhancing the automation and safety of ship dismantling processes.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Moderpublikationens namn
2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS)
Konferens
2024 6th International Conference on Data-driven Optimization of Complex Systems
ISBN
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Maskin- och produktionsteknik
Förlagets internationalitet
Internationell
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1109/DOCS63458.2024.10704462
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja