KF-PLS: Optimizing Kernel Partial Least-Squares (K-PLS) with Kernel Flows
Publiceringsår
2024
Upphovspersoner
Duma Zina-Sabrina; Susiluoto Jouni; Lamminpää Otto; Sihvonen Tuomas; Reinikainen Satu-Pia; Haario Heikki
Abstrakt
Partial Least-Squares (PLS) regression is a widely used tool in chemometrics for performing multivariate regression. As PLS has a limited capacity of modelling non-linear relations between the predictor variables and the response, Kernel PLS (K-PLS) has been introduced for modelling non-linear predictor-response relations. Most available studies use fixed kernel parameters, reducing the performance potential of the method. Only a few studies have been conducted on optimizing the kernel parameters for K-PLS. In this article, we propose a methodology for the kernel function optimization based on Kernel Flows (KF), a technique developed for Gaussian Process Regression (GPR). The results are illustrated with four case studies. The case studies represent both numerical examples and real data used in classification and regression tasks. K-PLS optimized with KF, called KF-PLS in this study, is shown to yield good results in all illustrated scenarios, outperforming literature results and other non-linear regression methodologies. In the present study, KF-PLS has been compared to convolutional neural networks (CNN), random trees, ensemble methods, support vector machines (SVM), and GPR, and it has proved to perform very well.
Visa merOrganisationer och upphovspersoner
Lappeenrannan–Lahden teknillinen yliopisto LUT
Haario Heikki
Reinikainen Satu-Pia
Sihvonen Tuomas
Duma Zina-Sabrina
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Förlagets internationalitet
Internationell
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1016/j.chemolab.2024.105238
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja