Evaluation of walking activity and gait to identify physical and mental fatigue in neurodegenerative and immune disorders: Preliminary insights from the IDEA-FAST feasibility study
Publiceringsår
2024
Upphovspersoner
Hinchliffe, Chloe; Rehman, Rana Zia Ur; Pinaud, Clemence; Branco, Diogo; Jackson, Dan; Ahmaniemi, Teemu; Guerreiro, Tiago; Chatterjee, Meenakshi; Manyakov, Nikolay V.; Pandis, Ioannis; Davies, Kristen; Macrae, Victoria; Aufenberg, Svenja; Paulides, Emma; Hildesheim, Hanna; Kudelka, Jennifer; Emmert, Kirsten; Van Gassen, Geert; Rochester, Lynn; van der Woude, C. Janneke; Reilmann, Ralf; Maetzler, Walter; Ng, Wan Fai; Del Din, Silvia; IDEA-FAST Consortium
Visa merAbstrakt
<p>Background: Many individuals with neurodegenerative (NDD) and immune-mediated inflammatory disorders (IMID) experience debilitating fatigue. Currently, assessments of fatigue rely on patient reported outcomes (PROs), which are subjective and prone to recall biases. Wearable devices, however, provide objective and reliable estimates of gait, an essential component of health, and may present objective evidence of fatigue. This study explored the relationships between gait characteristics derived from an inertial measurement unit (IMU) and patient-reported fatigue in the IDEA-FAST feasibility study. Methods: Participants with IMIDs and NDDs (Parkinson's disease (PD), Huntington's disease (HD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary Sjogren’s syndrome (PSS), and inflammatory bowel disease (IBD)) wore a lower-back IMU continuously for up to 10 days at home. Concurrently, participants completed PROs (physical fatigue (PF) and mental fatigue (MF)) up to four times a day. Macro (volume, variability, pattern, and acceleration vector magnitude) and micro (pace, rhythm, variability, asymmetry, and postural control) gait characteristics were extracted from the accelerometer data. The associations of these measures with the PROs were evaluated using a generalised linear mixed-effects model (GLMM) and binary classification with machine learning. Results: Data were recorded from 72 participants: PD = 13, HD = 9, RA = 12, SLE = 9, PSS = 14, IBD = 15. For the GLMM, the variability of the non-walking bouts length (in seconds) with PF returned the highest conditional R2, 0.165, and with MF the highest marginal R2, 0.0018. For the machine learning classifiers, the highest accuracy of the current analysis was returned by the micro gait characteristics with an intrasubject cross validation method and MF as 56.90% (precision = 43.9%, recall = 51.4%). Overall, the acceleration vector magnitude, bout length variation, postural control, and gait rhythm were the most interesting characteristics for future analysis. Conclusions: Counterintuitively, the outcomes indicate that there is a weak relationship between typical gait measures and abnormal fatigue. However, factors such as the COVID-19 pandemic may have impacted gait behaviours. Therefore, further investigations with a larger cohort are required to fully understand the relationship between gait and abnormal fatigue.</p>
Visa merOrganisationer och upphovspersoner
Teknologiska forskningscentralen VTT Ab
Ahmaniemi Teemu
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Volym
21
Nummer
1
Artikelnummer
94
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Licens för förläggarens version
CC BY
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Medicinsk teknik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Ja
DOI
10.1186/s12984-024-01390-1
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja