Forecast or Nowcast to Predict Electricity Prices? The Role of Open Data
Publiceringsår
2024
Upphovspersoner
Sridhar Araavind; Karhunen Markku; Honkapuro Samuli; Ruiz Fredy
Abstrakt
There are two primary methods for predicting electricity prices: forecasting and nowcasting. This study compares these approaches by employing various machine learning algorithms to forecast electricity prices. The nowcast algorithms are trained on data spanning from 2018 to 2021 and evaluated for the years 2022 and 2023, during which the energy system of Finland underwent significant changes, whereas the forecasting algorithms use the data for the previous 90 days to predict the next-day prices. Among nowcasting methods, Random Forest emerged as the top-performing algorithm, while the k Nearest Neighbor algorithm performed best in the forecasting approach. Despite achieving relatively low prediction errors, the predicted prices for 2022 and 2023 diverged notably from the actual prices. This discrepancy underscores the challenge of accurately predicting prices using current open data sources, particularly in scenarios involving significant alterations in the energy system. Consequently, the ability to anticipate price changes based on energy system transformations remains elusive, impacting research efforts focused on price prediction under future-specific circumstances.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Moderpublikationens namn
2024 20th International Conference on the European Energy Market (EEM)
ISSN
ISBN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Övrig teknik och teknologi
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1109/EEM60825.2024.10608865
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja