undefined

Certified coordinate selection for high-dimensional Bayesian inversion with Laplace prior

Publiceringsår

2024

Upphovspersoner

Flock Rafael; Dong Yiqiu; Uribe Felipe; Zahm Olivier

Abstrakt

We consider high-dimensional Bayesian inverse problems with arbitrary likelihood and product-form Laplace prior for which we provide a certified approximation of the posterior in the Hellinger distance. The approximate posterior differs from the prior only in a small number of relevant coordinates that contribute the most to the update from the prior to the posterior. We propose and analyze a gradient-based diagnostic to identify these relevant coordinates. Although this diagnostic requires computing an expectation with respect to the posterior, we propose tractable methods for the classical case of a linear forward model with Gaussian likelihood. Our methods can be employed to estimate the diagnostic before solving the Bayesian inverse problem via, e.g., Markov chain Monte Carlo (MCMC) methods. After selecting the coordinates, the approximate posterior can be efficiently inferred since most of its coordinates are only informed by the prior. Moreover, specialized MCMC methods, such as the pseudo-marginal MCMC algorithm, can be used to obtain less correlated samples when sampling the exact posterior. We show the applicability of our method using a 1D signal deblurring problem and a high-dimensional 2D super-resolution problem.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

34

Artikelnummer

134

Publikationsforum

67585

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Matematik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1007/s11222-024-10445-1

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja