Certified coordinate selection for high-dimensional Bayesian inversion with Laplace prior
Publiceringsår
2024
Upphovspersoner
Flock Rafael; Dong Yiqiu; Uribe Felipe; Zahm Olivier
Abstrakt
We consider high-dimensional Bayesian inverse problems with arbitrary likelihood and product-form Laplace prior for which we provide a certified approximation of the posterior in the Hellinger distance. The approximate posterior differs from the prior only in a small number of relevant coordinates that contribute the most to the update from the prior to the posterior. We propose and analyze a gradient-based diagnostic to identify these relevant coordinates. Although this diagnostic requires computing an expectation with respect to the posterior, we propose tractable methods for the classical case of a linear forward model with Gaussian likelihood. Our methods can be employed to estimate the diagnostic before solving the Bayesian inverse problem via, e.g., Markov chain Monte Carlo (MCMC) methods. After selecting the coordinates, the approximate posterior can be efficiently inferred since most of its coordinates are only informed by the prior. Moreover, specialized MCMC methods, such as the pseudo-marginal MCMC algorithm, can be used to obtain less correlated samples when sampling the exact posterior. We show the applicability of our method using a 1D signal deblurring problem and a high-dimensional 2D super-resolution problem.
Visa merOrganisationer och upphovspersoner
Lappeenrannan–Lahden teknillinen yliopisto LUT
Uribe Felipe
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Förläggare
Volym
34
Artikelnummer
134
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1007/s11222-024-10445-1
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja