Hybrid Nonlinear Model Predictive Motion Control of a Heavy-duty Bionic Caterpillar-like Robot
Publiceringsår
2024
Upphovspersoner
Li Dongyi; Lu Kun; Cheng Yong; Wu Huapeng; Handroos Heikki; Yang Songzhu; Zhang Yu; Pan Hongtao
Abstrakt
This paper investigates the motion control of the heavy-duty Bionic Caterpillar-like Robot (BCR) for the maintenance of the China Fusion Engineering Test Reactor (CFETR). Initially, a comprehensive nonlinear mathematical model for the BCR system is formulated using a physics-based approach. The nonlinear components of the model are compensated through nonlinear feedback linearization. Subsequently, a fuzzy-based regulator is employed to enhance the receding horizon optimization process for achieving optimal results. A Deep Neural Network (DNN) is trained to address disturbances. Consequently, a novel hybrid controller incorporating Nonlinear Model Predictive Control (NMPC), the Fuzzy Regulator (FR), and Deep Neural Network Feedforward (DNNF), named NMPC-FRDNNF is developed. Finally, the efficacy of the control system is validated through simulations and experiments. The results indicate that the Root Mean Square Error (RMSE) of the controller with FR and DNNF decreases by 33.2% and 48.9%, respectively, compared to the controller without these enhancements. This research provides a theoretical foundation and practical insights for ensuring the future highly stable, safe, and efficient maintenance of blankets.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Maskin- och produktionsteknik
Förlagets internationalitet
Internationell
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1007/s42235-024-00570-y
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja