undefined

Hybrid Nonlinear Model Predictive Motion Control of a Heavy-duty Bionic Caterpillar-like Robot

Publiceringsår

2024

Upphovspersoner

Li Dongyi; Lu Kun; Cheng Yong; Wu Huapeng; Handroos Heikki; Yang Songzhu; Zhang Yu; Pan Hongtao

Abstrakt

This paper investigates the motion control of the heavy-duty Bionic Caterpillar-like Robot (BCR) for the maintenance of the China Fusion Engineering Test Reactor (CFETR). Initially, a comprehensive nonlinear mathematical model for the BCR system is formulated using a physics-based approach. The nonlinear components of the model are compensated through nonlinear feedback linearization. Subsequently, a fuzzy-based regulator is employed to enhance the receding horizon optimization process for achieving optimal results. A Deep Neural Network (DNN) is trained to address disturbances. Consequently, a novel hybrid controller incorporating Nonlinear Model Predictive Control (NMPC), the Fuzzy Regulator (FR), and Deep Neural Network Feedforward (DNNF), named NMPC-FRDNNF is developed. Finally, the efficacy of the control system is validated through simulations and experiments. The results indicate that the Root Mean Square Error (RMSE) of the controller with FR and DNNF decreases by 33.2% and 48.9%, respectively, compared to the controller without these enhancements. This research provides a theoretical foundation and practical insights for ensuring the future highly stable, safe, and efficient maintenance of blankets.
Visa mer

Organisationer och upphovspersoner

Lappeenrannan–Lahden teknillinen yliopisto LUT

Li Dongyi

Handroos Heikki Orcid -palvelun logo

Wu Huapeng

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Maskin- och produktionsteknik

Förlagets internationalitet

Internationell

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1007/s42235-024-00570-y

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja