MLOps-Enabled Security Strategies for Next-Generation Operational Technologies
Publiceringsår
2024
Upphovspersoner
Ahmad Tazeem; Adnan Mohd; Rafi Saima; Akbar Muhammad Azeem; Anwar Ayesha
Abstrakt
In recent years, the significant increase in enterprise data availability and the progress in Artificial Intelligence (AI) have enabled organizations to address real-world issues through Machine Learning (ML). In this regard, machine learning operations (MLOps) have been proven to be a beneficial strategy for evolving ML models from theoretical ideas to practical solutions of business sector issues. With the knowledge of MLOps being vast and scattered, this research work focuses on the application of MLOps methodologies in sophisticated operational technologies, prioritizing the enhancement of security measures. This research work also discusses the specific challenges in securing ML implementations in such settings and underscores the importance of robust MLOps strategies in ensuring effective security protocols. Moreover, it explains current practices and identified improvement areas, highlighting the importance of MLOps in overcoming obstacles and maximizing the value of ML in operational technology contexts.
Visa merOrganisationer och upphovspersoner
Lappeenrannan–Lahden teknillinen yliopisto LUT
Akbar Azeem
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Moderpublikationens namn
Konferens
International Conference on Evaluation and Assessment in Software Engineering (EASE), 2024
Sidor
662-667
ISBN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Förlagets internationalitet
Internationell
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1145/3661167.3661283
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja