undefined

Multi-scale Promoted Self-adjusting Correlation Learning for Facial Action Unit Detection

Publiceringsår

2024

Upphovspersoner

Liu Xin; Yuan Kaishen; Niu Xuesong; Shi Jingang; Yu Zitong; Yue Huanjing; Yang Jingyu

Abstrakt

Facial Action Unit (AU) detection is a crucial task in affective computing and social robotics as it helps to identify emotions expressed through facial expressions. Anatomically, there are innumerable correlations between AUs, which contain rich information and are vital for AU detection. Previous methods used fixed AU correlations based on expert experience or statistical rules on specific benchmarks, but it is challenging to comprehensively reflect complex correlations between AUs via hand-crafted settings. There are alternative methods that employ a fully connected graph to learn these dependencies exhaustively. However, these approaches can result in a computational explosion and high dependency with a large dataset. To address these challenges, this paper proposes a novel self-adjusting AU-correlation learning (SACL) method with less computation for AU detection. This method adaptively learns and updates AU correlation graphs by efficiently leveraging the characteristics of different levels of AU motion and emotion representation information extracted in different stages of the network. Moreover, this paper explores the role of multi-scale learning in correlation information extraction, and design a simple yet effective multi-scale feature learning (MSFL) method to promote better performance in AU detection. By integrating AU correlation information with multi-scale features, the proposed method obtains a more robust feature representation for the final AU detection. Extensive experiments show that the proposed method outperforms the state-of-the-art methods on widely used AU detection benchmark datasets, with only 28.7% and 12.0% of the parameters and FLOPs of the best method, respectively. The code for this method is available at https://github.com/linuxsino/Self-adjusting-AU .
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Förlagets internationalitet

Internationell

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/TAFFC.2024.3460538

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja