undefined

Species-Agnostic Patterned Animal Re-identification by Aggregating Deep Local Features

Publiceringsår

2024

Upphovspersoner

Nepovinnykh Ekaterina; Chelak Ilia; Eerola Tuomas; Immonen Veikka; Kälviäinen Heikki; Kholiavchenko Maksim; Stewart Charles V.

Abstrakt

Access to large image volumes through camera traps and crowdsourcing provides novel possibilities for animal monitoring and conservation. It calls for automatic methods for analysis, in particular, when re-identifying individual animals from the images. Most existing re-identification methods rely on either hand-crafted local features or end-to-end learning of fur pattern similarity. The former does not need labeled training data, while the latter, although very data-hungry typically outperforms the former when enough training data is available. We propose a novel re-identification pipeline that combines the strengths of both approaches by utilizing modern learnable local features and feature aggregation. This creates representative pattern feature embeddings that provide high re-identification accuracy while allowing us to apply the method to small datasets by using pre-trained feature descriptors. We report a comprehensive comparison of different modern local features and demonstrate the advantages of the proposed pipeline on two very different species.
Visa mer

Organisationer och upphovspersoner

Lappeenrannan–Lahden teknillinen yliopisto LUT

Nepovinnykh Ekaterina

Kälviäinen Heikki Orcid -palvelun logo

Eerola Tuomas Orcid -palvelun logo

Immonen Veikka

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Publikationsforum

58342

Publikationsforumsnivå

3

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1007/s11263-024-02071-1

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja