undefined

Exploring the Performance of Large Language Models for Data Analysis Tasks Through the CRISP-DM Framework

Publiceringsår

2024

Upphovspersoner

Nurlan Musazade; Jozsef Mezei; Xiaolu Wang

Abstrakt

This paper investigates the impact of Large Language Models (LLMs), specifically GPT, on data analysis tasks within the framework of CRISP-DM (Cross-Industry Standard Process for Data Mining). In order to assess the efficiency of text-to-code language models in data-related tasks, we systematically examine the performance of LLMs in the stages of the data mining process. GPT models are tested against a series of Python programming and SQL tasks derived from a Master’s program’s curriculum. The tasks focus on data exploration, visualization, preprocessing, and advanced analytical tasks like association rule mining and classification. The findings show that GPT models exhibit proficiency in Python programming across various CRISP-DM stages, particularly in Data Understanding, Preparation, and Modeling. They adeptly utilize Python libraries for data manipulation and visualization, demonstrating potential as effective tools in data science. However, the study also uncovers areas where the GPT Text-to-code model shows partial correctness, highlighting the need for human oversight in complex data analysis scenarios. This research contributes to understanding how AI can augment traditional data analysis methods, particularly under the CRISP-DM framework. It reveals the potential of LLMs in automating stages of data analysis, suggesting an acceleration in analytical processes and decision-making. The study provides valuable insights for organizations integrating AI into data analysis, balancing AI strengths with human expertise.
Visa mer

Organisationer och upphovspersoner

Åbo Akademi

Musazade Nurlan

Mezei Jozsef

Wang Xiaolu

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Företagsekonomi

Nyckelord

[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1007/978-3-031-60227-6_5

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja