undefined

Data-driven friction force prediction model for hydraulic actuators using deep neural networks

Publiceringsår

2024

Upphovspersoner

Han Seongji; Orzechowski Grzegorz; Kim Jin-Gyun; Mikkola Aki

Abstrakt

Hydraulic actuators convert fluid pressure into mechanical motion. They are widely used in many industrial and aerospace applications due to their reliability, high speed, high force output, smooth operation, and shock compensation ability. Because of their importance and wide adoption, it is vital to enable precise modeling of such devices. Fortunately, various modeling methods exist for hydraulic actuators and hydraulically driven systems, ranging from lookup tables or simple equations reflecting the system’s main features using lumped fluid theory to sophisticated and realistic fluid dynamics models. However, accurately accounting for friction that can depend nonlinearly on several state variables remains a core challenge in achieving high-fidelity hydraulic modeling. Therefore, several computational friction models are available, and their parameters must be identified or guessed. Another concern refers to simulation efficiency when complex models are considered. This study introduces a data-driven surrogate based on deep neural networks to address the challenge of practical and effective modeling of friction in hydraulic actuators. The surrogate is trained as a predictor using synthetic data generated from LuGre friction, demonstrating excellent accuracy and efficiency.
Visa mer

Organisationer och upphovspersoner

Lappeenrannan–Lahden teknillinen yliopisto LUT

Mikkola Aki

Orzechowski Grzegorz Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Elsevier

Volym

192

Artikelnummer

105545

Publikationsforum

63096

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Maskin- och produktionsteknik

Förlagets internationalitet

Internationell

Internationell sampublikation

Ja

Sampublikation med ett företag

Okänd

DOI

10.1016/j.mechmachtheory.2023.105545

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja