undefined

Mammo-Light: A lightweight convolutional neural network for diagnosing breast cancer from mammography images

Publiceringsår

2024

Upphovspersoner

Raiaan Mohaimenul Azam Khan; Fahad Nur Mohammad; Mukta Md Saddam Hossain; Shatabda Swakkhar

Abstrakt

People of all countries, developed and developing alike endure cancer-related fatal diseases. The rate of breast cancer in females is increasing daily, partly due to ignorance and misdiagnosis in the early stages. Diagnosis of breast cancer accurately during its earlier stages of development can result in proper initial treatment for breast cancer. Artificial intelligence can aid in the acceleration and automation of breast cancer detection. Deep learning is decisive in effectively recognizing and classifying cancer on large datasets of medical images. In this paper, we propose a novel computer-aided classification approach, Mammo-Light for breast cancer prediction. Preprocessing strategies have been utilized to eradicate the noise and enhance mammogram lesions. Photometric augmentation techniques adapted to the preprocessed classes to balance and increase the size of the dataset. After that, a lightweight yet intuitive convolutional neural network is applied to classify breast cancer on the publicly available dataset CBIS-DDSM. For further validation of the proposed approach, we have used the MIAS dataset. Mammo-Light attained a 99.17% and 98.42% test accuracy respectively for CBIS-DDSM and MIAS datasets and outperformed state-of-the-art methods in terms of accuracy and other metrics. Due to being the lightweight model, Mammo-Light performs exceptionally well with fewer parameters and computational time, which can potentially contribute to the field of breast cancer early diagnosis and enable fast treatment.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Elsevier

Volym

94

Artikelnummer

106279

Publikationsforum

52411

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Internationell sampublikation

Ja

Sampublikation med ett företag

Okänd

DOI

10.1016/j.bspc.2024.106279

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja