undefined

Digital twins-enabled zero touch network: A smart contract and explainable AI integrated cybersecurity framework

Publiceringsår

2024

Upphovspersoner

Kumar Randhir; Aljuhani Ahamed; Javeed Danish; Kumar Prabhat; Islam Shareeful; Islam AKM Najmul

Abstrakt

Data-driven modeling using Artificial Intelligence (AI) is envisioned as a key enabling technology for Zero Touch Network (ZTN) management. Specifically, AI has shown huge potential for automating and modeling the threat detection mechanism of complicated wireless systems. The current data-driven AI systems, however, lack transparency and accountability in their decisions, and assuring the reliability and trustworthiness of the data collected from participating entities is an important obstacle to threat detection and decision-making. To this end, we integrate smart contracts with eXplainable AI (XAI) to design a robust cybersecurity framework for ZTN. The proposed framework uses a blockchain and smart contract-enabled access control and authentication mechanism to ensure trust among the participating entities. Additionally, with the collected data, we designed Digital Twins (DTs) for simulating the attack detection operation in the ZTN environment. Specifically, to provide a platform for analysis and the development of an Intrusion Detection System (IDS), the DTs are equipped with a variety of process-aware attack scenarios. A Self Attention-based Long Short Term Memory (SALSTM) network is used to evaluate the attack detection capabilities of the proposed framework. Furthermore, the explainability of the proposed AI-based IDS is achieved using the SHapley Additive exPlanations (SHAP) tool. The experimental results using N-BaIoT and a self-generated DTs dataset confirm the superiority of the proposed framework over some baseline and state-of-the-art techniques.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Elsevier

Publikationsforum

56436

Publikationsforumsnivå

3

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Internationell sampublikation

Ja

Sampublikation med ett företag

Okänd

DOI

10.1016/j.future.2024.02.015

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja